**Physical Address**

304 North Cardinal St.

Dorchester Center, MA 02124

Given the heads of two singly linked-lists `headA`

and `headB`

, return *the node at which the two lists intersect*. If the two linked lists have no intersection at all, return `null`

.

For example, the following two linked lists begin to intersect at node `c1`

:

The test cases are generated such that there are no cycles anywhere in the entire linked structure.

**Note** that the linked lists must **retain their original structure** after the function returns.

**Custom Judge:**

The inputs to the **judge** are given as follows (your program is **not** given these inputs):

`intersectVal`

– The value of the node where the intersection occurs. This is`0`

if there is no intersected node.`listA`

– The first linked list.`listB`

– The second linked list.`skipA`

– The number of nodes to skip ahead in`listA`

(starting from the head) to get to the intersected node.`skipB`

– The number of nodes to skip ahead in`listB`

(starting from the head) to get to the intersected node.

The judge will then create the linked structure based on these inputs and pass the two heads, `headA`

and `headB`

to your program. If you correctly return the intersected node, then your solution will be **accepted**.

**Example 1:**

```
Input: intersectVal = 8, listA = [4,1,8,4,5], listB = [5,6,1,8,4,5], skipA = 2, skipB = 3
Output: Intersected at '8'
Explanation: The intersected node's value is 8 (note that this must not be 0 if the two lists intersect).
From the head of A, it reads as [4,1,8,4,5]. From the head of B, it reads as [5,6,1,8,4,5]. There are 2 nodes before the intersected node in A; There are 3 nodes before the intersected node in B.
```

**Example 2:**

```
Input: intersectVal = 2, listA = [1,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1
Output: Intersected at '2'
Explanation: The intersected node's value is 2 (note that this must not be 0 if the two lists intersect).
From the head of A, it reads as [1,9,1,2,4]. From the head of B, it reads as [3,2,4]. There are 3 nodes before the intersected node in A; There are 1 node before the intersected node in B.
```

**Example 3:**

```
Input: intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2
Output: No intersection
Explanation: From the head of A, it reads as [2,6,4]. From the head of B, it reads as [1,5]. Since the two lists do not intersect, intersectVal must be 0, while skipA and skipB can be arbitrary values.
Explanation: The two lists do not intersect, so return null.
```

**Constraints:**

- The number of nodes of
`listA`

is in the`m`

. - The number of nodes of
`listB`

is in the`n`

. `1 <= m, n <= 3 * 10`

^{4}`1 <= Node.val <= 10`

^{5}`0 <= skipA < m`

`0 <= skipB < n`

`intersectVal`

is`0`

if`listA`

and`listB`

do not intersect.`intersectVal == listA[skipA] == listB[skipB]`

if`listA`

and`listB`

intersect.

```
public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
//boundary check
if(headA == null || headB == null) return null;
ListNode a = headA;
ListNode b = headB;
//if a & b have different len, then we will stop the loop after second iteration
while( a != b){
//for the end of first iteration, we just reset the pointer to the head of another linkedlist
a = a == null? headB : a.next;
b = b == null? headA : b.next;
}
return a;
}
```

```
ListNode *getIntersectionNode(ListNode *headA, ListNode *headB)
{
ListNode *p1 = headA;
ListNode *p2 = headB;
if (p1 == NULL || p2 == NULL) return NULL;
while (p1 != NULL && p2 != NULL && p1 != p2) {
p1 = p1->next;
p2 = p2->next;
//
// Any time they collide or reach end together without colliding
// then return any one of the pointers.
//
if (p1 == p2) return p1;
//
// If one of them reaches the end earlier then reuse it
// by moving it to the beginning of other list.
// Once both of them go through reassigning,
// they will be equidistant from the collision point.
//
if (p1 == NULL) p1 = headB;
if (p2 == NULL) p2 = headA;
}
return p1;
}
```

```
class Solution:
# @param two ListNodes
# @return the intersected ListNode
def getIntersectionNode(self, headA, headB):
if headA is None or headB is None:
return None
pa = headA # 2 pointers
pb = headB
while pa is not pb:
# if either pointer hits the end, switch head and continue the second traversal,
# if not hit the end, just move on to next
pa = headB if pa is None else pa.next
pb = headA if pb is None else pb.next
return pa # only 2 ways to get out of the loop, they meet or the both hit the end=None
# the idea is if you switch head, the possible difference between length would be countered.
# On the second traversal, they either hit or miss.
# if they meet, pa or pb would be the node we are looking for,
# if they didn't meet, they will hit the end at the same iteration, pa == pb == None, return either one of them is the same,None
```

In our experience, we suggest you solve this Intersection of Two Linked Lists LeetCode Solution and gain some new skills from Professionals completely free and we assure you will be worth it.

If you are stuck anywhere between any coding problem, just visit Queslers to get the Intersection of Two Linked Lists LeetCode Solution

I hope this Intersection of Two Linked Lists LeetCode Solution would be useful for you to learn something new from this problem. If it helped you then don’t forget to bookmark our site for more Coding Solutions.

This Problem is intended for audiences of all experiences who are interested in learning about Data Science in a business context; there are no prerequisites.

Keep Learning!

**More Coding Solutions >>**