Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Given an array of points
where points[i] = [xi, yi]
represents a point on the X-Y plane, return the maximum number of points that lie on the same straight line.
Example 1:
Input: points = [[1,1],[2,2],[3,3]]
Output: 3
Example 2:
Input: points = [[1,1],[3,2],[5,3],[4,1],[2,3],[1,4]]
Output: 4
Constraints:
1 <= points.length <= 300
points[i].length == 2
-104 <= xi, yi <= 104
points
are unique. public class Solution{
public int maxPoints(Point[] points) {
if (points==null) return 0;
if (points.length<=2) return points.length;
Map<Integer,Map<Integer,Integer>> map = new HashMap<Integer,Map<Integer,Integer>>();
int result=0;
for (int i=0;i<points.length;i++){
map.clear();
int overlap=0,max=0;
for (int j=i+1;j<points.length;j++){
int x=points[j].x-points[i].x;
int y=points[j].y-points[i].y;
if (x==0&&y==0){
overlap++;
continue;
}
int gcd=generateGCD(x,y);
if (gcd!=0){
x/=gcd;
y/=gcd;
}
if (map.containsKey(x)){
if (map.get(x).containsKey(y)){
map.get(x).put(y, map.get(x).get(y)+1);
}else{
map.get(x).put(y, 1);
}
}else{
Map<Integer,Integer> m = new HashMap<Integer,Integer>();
m.put(y, 1);
map.put(x, m);
}
max=Math.max(max, map.get(x).get(y));
}
result=Math.max(result, max+overlap+1);
}
return result;
}
private int generateGCD(int a,int b){
if (b==0) return a;
else return generateGCD(b,a%b);
}
}
int maxPoints(vector<Point> &points) {
int result = 0;
for(int i = 0; i < points.size(); i++){
int samePoint = 1;
unordered_map<double, int> map;
for(int j = i + 1; j < points.size(); j++){
if(points[i].x == points[j].x && points[i].y == points[j].y){
samePoint++;
}
else if(points[i].x == points[j].x){
map[INT_MAX]++;
}
else{
double slope = double(points[i].y - points[j].y) / double(points[i].x - points[j].x);
map[slope]++;
}
}
int localMax = 0;
for(auto it = map.begin(); it != map.end(); it++){
localMax = max(localMax, it->second);
}
localMax += samePoint;
result = max(result, localMax);
}
return result;
}
def maxPoints(self, points):
l = len(points)
m = 0
for i in range(l):
dic = {'i': 1}
same = 0
for j in range(i+1, l):
tx, ty = points[j].x, points[j].y
if tx == points[i].x and ty == points[i].y:
same += 1
continue
if points[i].x == tx: slope = 'i'
else:slope = (points[i].y-ty) * 1.0 /(points[i].x-tx)
if slope not in dic: dic[slope] = 1
dic[slope] += 1
m = max(m, max(dic.values()) + same)
return m
In our experience, we suggest you solve this Max Points on a Line LeetCode Solution and gain some new skills from Professionals completely free and we assure you will be worth it.
If you are stuck anywhere between any coding problem, just visit Queslers to get the Max Points on a Line LeetCode Solution
I hope this Max Points on a Line LeetCode Solution would be useful for you to learn something new from this problem. If it helped you then don’t forget to bookmark our site for more Coding Solutions.
This Problem is intended for audiences of all experiences who are interested in learning about Data Science in a business context; there are no prerequisites.
Keep Learning!
More Coding Solutions >>