Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Given two sorted arrays nums1
and nums2
of size m
and n
respectively, return the median of the two sorted arrays.
The overall run time complexity should be O(log (m+n))
.
Example 1:
Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.
Example 2:
Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Constraints:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
public double findMedianSortedArrays(int[] A, int[] B) {
int m = A.length, n = B.length;
int l = (m + n + 1) / 2;
int r = (m + n + 2) / 2;
return (getkth(A, 0, B, 0, l) + getkth(A, 0, B, 0, r)) / 2.0;
}
public double getkth(int[] A, int aStart, int[] B, int bStart, int k) {
if (aStart > A.length - 1) return B[bStart + k - 1];
if (bStart > B.length - 1) return A[aStart + k - 1];
if (k == 1) return Math.min(A[aStart], B[bStart]);
int aMid = Integer.MAX_VALUE, bMid = Integer.MAX_VALUE;
if (aStart + k/2 - 1 < A.length) aMid = A[aStart + k/2 - 1];
if (bStart + k/2 - 1 < B.length) bMid = B[bStart + k/2 - 1];
if (aMid < bMid)
return getkth(A, aStart + k/2, B, bStart, k - k/2);// Check: aRight + bLeft
else
return getkth(A, aStart, B, bStart + k/2, k - k/2);// Check: bRight + aLeft
}
def findMedianSortedArrays(self, A, B):
l = len(A) + len(B)
if l % 2 == 1:
return self.kth(A, B, l // 2)
else:
return (self.kth(A, B, l // 2) + self.kth(A, B, l // 2 - 1)) / 2.
def kth(self, a, b, k):
if not a:
return b[k]
if not b:
return a[k]
ia, ib = len(a) // 2 , len(b) // 2
ma, mb = a[ia], b[ib]
# when k is bigger than the sum of a and b's median indices
if ia + ib < k:
# if a's median is bigger than b's, b's first half doesn't include k
if ma > mb:
return self.kth(a, b[ib + 1:], k - ib - 1)
else:
return self.kth(a[ia + 1:], b, k - ia - 1)
# when k is smaller than the sum of a and b's indices
else:
# if a's median is bigger than b's, a's second half doesn't include k
if ma > mb:
return self.kth(a[:ia], b, k)
else:
return self.kth(a, b[:ib], k)
class Solution {
public:
int kth(int a[], int m, int b[], int n, int k) {
if (m < n) return kth(b,n,a,m,k);
if (n==0) return a[k-1];
if (k==1) return min(a[0],b[0]);
int j = min(n,k/2);
int i = k-j;
if (a[i-1] > b[j-1]) return kth(a,i,b+j,n-j,k-j);
return kth(a+i,m-i,b,j,k-i);
}
double findMedianSortedArrays(int a[], int m, int b[], int n) {
int k = (m+n)/2;
int m1 = kth(a,m,b,n,k+1);
if ((m+n)%2==0) {
int m2 = kth(a,m,b,n,k);
return ((double)m1+m2)/2.0;
}
return m1;
}
};
In our experience, we suggest you solve this Median of Two Sorted Arrays LeetCode Solution and gain some new skills from Professionals completely free and we assure you will be worth it.
If you are stuck anywhere between any coding problem, just visit Queslers to get the Median of Two Sorted Arrays LeetCode Solution
I hope this Median of Two Sorted Arrays LeetCode Solution would be useful for you to learn something new from this problem. If it helped you then don’t forget to bookmark our site for more Coding Solutions.
This Problem is intended for audiences of all experiences who are interested in learning about Data Science in a business context; there are no prerequisites.
Keep Learning!
More Coding Solutions >>