Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
The n-queens puzzle is the problem of placing n
queens on an n x n
chessboard such that no two queens attack each other.
Given an integer n
, return all distinct solutions to the n-queens puzzle. You may return the answer in any order.
Each solution contains a distinct board configuration of the n-queens’ placement, where 'Q'
and '.'
both indicate a queen and an empty space, respectively.
Example 1:
Input: n = 4
Output: [[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above
Example 2:
Input: n = 1
Output: [["Q"]]
Constraints:
1 <= n <= 9
class Solution {
public:
std::vector<std::vector<std::string> > solveNQueens(int n) {
std::vector<std::vector<std::string> > res;
std::vector<std::string> nQueens(n, std::string(n, '.'));
solveNQueens(res, nQueens, 0, n);
return res;
}
private:
void solveNQueens(std::vector<std::vector<std::string> > &res, std::vector<std::string> &nQueens, int row, int &n) {
if (row == n) {
res.push_back(nQueens);
return;
}
for (int col = 0; col != n; ++col)
if (isValid(nQueens, row, col, n)) {
nQueens[row][col] = 'Q';
solveNQueens(res, nQueens, row + 1, n);
nQueens[row][col] = '.';
}
}
bool isValid(std::vector<std::string> &nQueens, int row, int col, int &n) {
//check if the column had a queen before.
for (int i = 0; i != row; ++i)
if (nQueens[i][col] == 'Q')
return false;
//check if the 45° diagonal had a queen before.
for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; --i, --j)
if (nQueens[i][j] == 'Q')
return false;
//check if the 135° diagonal had a queen before.
for (int i = row - 1, j = col + 1; i >= 0 && j < n; --i, ++j)
if (nQueens[i][j] == 'Q')
return false;
return true;
}
};
def solveNQueens(self, n):
def DFS(queens, xy_dif, xy_sum):
p = len(queens)
if p==n:
result.append(queens)
return None
for q in range(n):
if q not in queens and p-q not in xy_dif and p+q not in xy_sum:
DFS(queens+[q], xy_dif+[p-q], xy_sum+[p+q])
result = []
DFS([],[],[])
return [ ["."*i + "Q" + "."*(n-i-1) for i in sol] for sol in result]
public class Solution {
public List<List<String>> solveNQueens(int n) {
char[][] board = new char[n][n];
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
board[i][j] = '.';
List<List<String>> res = new ArrayList<List<String>>();
dfs(board, 0, res);
return res;
}
private void dfs(char[][] board, int colIndex, List<List<String>> res) {
if(colIndex == board.length) {
res.add(construct(board));
return;
}
for(int i = 0; i < board.length; i++) {
if(validate(board, i, colIndex)) {
board[i][colIndex] = 'Q';
dfs(board, colIndex + 1, res);
board[i][colIndex] = '.';
}
}
}
private boolean validate(char[][] board, int x, int y) {
for(int i = 0; i < board.length; i++) {
for(int j = 0; j < y; j++) {
if(board[i][j] == 'Q' && (x + j == y + i || x + y == i + j || x == i))
return false;
}
}
return true;
}
private List<String> construct(char[][] board) {
List<String> res = new LinkedList<String>();
for(int i = 0; i < board.length; i++) {
String s = new String(board[i]);
res.add(s);
}
return res;
}
}
In our experience, we suggest you solve this N-Queens LeetCode Solution and gain some new skills from Professionals completely free and we assure you will be worth it.
If you are stuck anywhere between any coding problem, just visit Queslers to get the N-Queens LeetCode Solution
I hope this N-Queens LeetCode Solution would be useful for you to learn something new from this problem. If it helped you then don’t forget to bookmark our site for more Coding Solutions.
This Problem is intended for audiences of all experiences who are interested in learning about Data Science in a business context; there are no prerequisites.
Keep Learning!
More Coding Solutions >>