Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
You are given a 0-indexed integer array nums
and two integers key
and k
. A k-distant index is an index i
of nums
for which there exists at least one index j
such that |i - j| <= k
and nums[j] == key
.
Return a list of all k-distant indices sorted in increasing order.
Example 1:
Input: nums = [3,4,9,1,3,9,5], key = 9, k = 1
Output: [1,2,3,4,5,6]
Explanation: Here, nums[2] == key and nums[5] == key.
- For index 0, |0 - 2| > k and |0 - 5| > k, so there is no j where |0 - j| <= k and nums[j] == key. Thus, 0 is not a k-distant index.
- For index 1, |1 - 2| <= k and nums[2] == key, so 1 is a k-distant index.
- For index 2, |2 - 2| <= k and nums[2] == key, so 2 is a k-distant index.
- For index 3, |3 - 2| <= k and nums[2] == key, so 3 is a k-distant index.
- For index 4, |4 - 5| <= k and nums[5] == key, so 4 is a k-distant index.
- For index 5, |5 - 5| <= k and nums[5] == key, so 5 is a k-distant index.
- For index 6, |6 - 5| <= k and nums[5] == key, so 6 is a k-distant index.
Thus, we return [1,2,3,4,5,6] which is sorted in increasing order.
Example 2:
Input: nums = [2,2,2,2,2], key = 2, k = 2
Output: [0,1,2,3,4]
Explanation: For all indices i in nums, there exists some index j such that |i - j| <= k and nums[j] == key, so every index is a k-distant index.
Hence, we return [0,1,2,3,4].
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 1000
key
is an integer from the array nums
.1 <= k <= nums.length
vector<int> findKDistantIndices(vector<int>& nums, int key, int k) {
vector<int> res;
for (int i = 0, j = 0; i < nums.size(); ++i)
if (nums[i] == key)
for (j = max(j, i - k); j <= i + k && j < nums.size(); ++j)
res.push_back(j);
return res;
}
public List<Integer> findKDistantIndices(int[] nums, int key, int k) {
List<Integer> idx = new ArrayList<>();
List<Integer> ans = new ArrayList<>();
for(int i = 0 ; i < nums.length; i++){
if(nums[i] == key){
idx.add(i);
}
}
int last = 0;
for(int ind : idx){
int i = Math.max(last,ind-k);
for(; i <= ind+k && i < nums.length; i++){
ans.add(i);
}
last = i;
}
return ans;
}
class Solution:
def findKDistantIndices(self, nums: List[int], key: int, k: int) -> List[int]:
lis=deque([])
prev_popped=-1
for i in range(len(nums)):
if(nums[i]==key):
lis.append(i)
ans=[]
for i in range(len(nums)):
if(len(lis)>0 and lis[0]<i):
prev_popped = lis.popleft()
if(prev_popped!=-1 and (i-prev_popped) <=k):
ans.append(i)
elif(len(lis)>0 and (lis[0]-i)<=k):
ans.append(i)
return ans
There is an n x n
0-indexed grid with some artifacts buried in it. You are given the integer n
and a 0-indexed 2D integer array artifacts
describing the positions of the rectangular artifacts where artifacts[i] = [r1i, c1i, r2i, c2i]
denotes that the ith
artifact is buried in the subgrid where:
(r1i, c1i)
is the coordinate of the top-left cell of the ith
artifact and(r2i, c2i)
is the coordinate of the bottom-right cell of the ith
artifact.You will excavate some cells of the grid and remove all the mud from them. If the cell has a part of an artifact buried underneath, it will be uncovered. If all the parts of an artifact are uncovered, you can extract it.
Given a 0-indexed 2D integer array dig
where dig[i] = [ri, ci]
indicates that you will excavate the cell (ri, ci)
, return the number of artifacts that you can extract.
The test cases are generated such that:
4
cells.dig
are unique.Example 1:
Input: n = 2, artifacts = [[0,0,0,0],[0,1,1,1]], dig = [[0,0],[0,1]]
Output: 1
Explanation:
The different colors represent different artifacts. Excavated cells are labeled with a 'D' in the grid.
There is 1 artifact that can be extracted, namely the red artifact.
The blue artifact has one part in cell (1,1) which remains uncovered, so we cannot extract it.
Thus, we return 1.
Example 2:
Input: n = 2, artifacts = [[0,0,0,0],[0,1,1,1]], dig = [[0,0],[0,1],[1,1]]
Output: 2
Explanation: Both the red and blue artifacts have all parts uncovered (labeled with a 'D') and can be extracted, so we return 2.
Constraints:
1 <= n <= 1000
1 <= artifacts.length, dig.length <= min(n2, 105)
artifacts[i].length == 4
dig[i].length == 2
0 <= r1i, c1i, r2i, c2i, ri, ci <= n - 1
r1i <= r2i
c1i <= c2i
4
.dig
are unique.class Solution {
public int digArtifacts(int n, int[][] artifacts, int[][] dig) {
HashSet<String> set = new HashSet<>();
for (int d[] : dig) set.add(d[0] + " " + d[1]);
int c = 0;
for (int a[] : artifacts) {
boolean done = true;
for (int i = a[0]; i <= a[2]; i++) {
for (int j = a[1]; j <= a[3]; j++) {
if (!set.contains(i + " " + j)) done = false;
}
}
if (done) c++;
}
return c;
}
}
//TC = O(DIG + N^2)
class Solution {
public:
int digArtifacts(int n, vector<vector<int>>& artifacts, vector<vector<int>>& dig) {
vector<vector<bool>>visited(n,vector<bool>(n,0));
for(auto vec:dig){
visited[vec[0]][vec[1]] = 1;
}
int count = 0;
for(auto artifact:artifacts){
int r1 = artifact[0];
int c1 = artifact[1];
int r2 = artifact[2];
int c2 = artifact[3];
bool flag = true;
for(int i = r1;i<=r2;i++){
for(int j = c1;j<=c2;j++){
if(!visited[i][j]){
flag = false;
}
}
}
if(flag)
count++;
}
return count;
}
};
Time Complexity: O(n^2)
Space Complexity: O(n^2)
class Solution:
def digArtifacts(self, n: int, artifacts: List[List[int]], dig: List[List[int]]) -> int:
s=set()
for i in dig:
s.add((i[0],i[1]))
ans=0
for a in artifacts:
flag=0
for i in range(a[0],a[2]+1):
for j in range(a[1],a[3]+1):
if((i,j) not in s):
flag=1
break
if(flag==0):ans+=1
return ans
You are given a 0-indexed integer array nums
representing the contents of a pile, where nums[0]
is the topmost element of the pile.
In one move, you can perform either of the following:
You are also given an integer k
, which denotes the total number of moves to be made.
Return the maximum value of the topmost element of the pile possible after exactly k
moves. In case it is not possible to obtain a non-empty pile after k
moves, return -1
.
Example 1:
Input: nums = [5,2,2,4,0,6], k = 4
Output: 5
Explanation:
One of the ways we can end with 5 at the top of the pile after 4 moves is as follows:
- Step 1: Remove the topmost element = 5. The pile becomes [2,2,4,0,6].
- Step 2: Remove the topmost element = 2. The pile becomes [2,4,0,6].
- Step 3: Remove the topmost element = 2. The pile becomes [4,0,6].
- Step 4: Add 5 back onto the pile. The pile becomes [5,4,0,6].
Note that this is not the only way to end with 5 at the top of the pile. It can be shown that 5 is the largest answer possible after 4 moves.
Example 2:
Input: nums = [2], k = 1
Output: -1
Explanation:
In the first move, our only option is to pop the topmost element of the pile.
Since it is not possible to obtain a non-empty pile after one move, we return -1.
Constraints:
1 <= nums.length <= 105
0 <= nums[i], k <= 109
def maximumTop(self, nums: List[int], k: int) -> int:
if (len(nums) == 1) and (k & 1): return -1
maxi = -1
for i in range(min(len(nums), k-1)):
maxi = max(maxi, nums[i])
if k < len(nums):
maxi = max(maxi, nums[k])
return maxi
public static int maximumTop(int[] nums, int k) {
if (nums.length == 1 && k % 2 == 1) return -1; // if size is 1 and k odd stack will be empty
int max = 0;
for (int i = 0; i < Math.min(k - 1 ,nums.length); i++) //finding the max element from first k-1 elelment or len -1 if len is less than k
max = Math.max(max, nums[i]);
if (k < nums.length) // check for scenario where we dont have to put back Max out of k-1 element
max = Math.max(max, nums[k]);
return max;
}
class Solution {
public:
int maximumTop(vector<int>& v, int k) {
int n=v.size();
if(n==1 && k%2==1){
return -1;
}
int mx=INT_MIN;
for(int i=0;i<n && i<k-1;i++){
mx=max(mx,v[i]);
}
if(k<n){
mx=max(mx,v[k]);
}
return mx;
}
};
class Solution:
def maximumTop(self, nums: List[int], k: int) -> int:
if len(nums) == 1:
if k%2 != 0:
return -1
return nums[0]
if k == 0:
return nums[0]
if k == len(nums):
return max(nums[:-1])
if k > len(nums):
return max(nums)
if k == 1:
return nums[1]
m = max(nums[:k-1])
m = max(m, nums[k])
return m
You are given an integer n
denoting the number of nodes of a weighted directed graph. The nodes are numbered from 0
to n - 1
.
You are also given a 2D integer array edges
where edges[i] = [fromi, toi, weighti]
denotes that there exists a directed edge from fromi
to toi
with weight weighti
.
Lastly, you are given three distinct integers src1
, src2
, and dest
denoting three distinct nodes of the graph.
Return the minimum weight of a subgraph of the graph such that it is possible to reach dest
from both src1
and src2
via a set of edges of this subgraph. In case such a subgraph does not exist, return -1
.
A subgraph is a graph whose vertices and edges are subsets of the original graph. The weight of a subgraph is the sum of weights of its constituent edges.
Example 1:
Input: n = 6, edges = [[0,2,2],[0,5,6],[1,0,3],[1,4,5],[2,1,1],[2,3,3],[2,3,4],[3,4,2],[4,5,1]], src1 = 0, src2 = 1, dest = 5
Output: 9
Explanation:
The above figure represents the input graph.
The blue edges represent one of the subgraphs that yield the optimal answer.
Note that the subgraph [[1,0,3],[0,5,6]] also yields the optimal answer. It is not possible to get a subgraph with less weight satisfying all the constraints.
Example 2:
Input: n = 3, edges = [[0,1,1],[2,1,1]], src1 = 0, src2 = 1, dest = 2
Output: -1
Explanation:
The above figure represents the input graph.
It can be seen that there does not exist any path from node 1 to node 2, hence there are no subgraphs satisfying all the constraints.
Constraints:
3 <= n <= 105
0 <= edges.length <= 105
edges[i].length == 3
0 <= fromi, toi, src1, src2, dest <= n - 1
fromi != toi
src1
, src2
, and dest
are pairwise distinct.1 <= weight[i] <= 105
class Solution:
def minimumWeight(self, n, edges, s1, s2, dest):
G1 = defaultdict(list)
G2 = defaultdict(list)
for a, b, w in edges:
G1[a].append((b, w))
G2[b].append((a, w))
def Dijkstra(graph, K):
q, t = [(0, K)], {}
while q:
time, node = heappop(q)
if node not in t:
t[node] = time
for v, w in graph[node]:
heappush(q, (time + w, v))
return [t.get(i, float("inf")) for i in range(n)]
arr1 = Dijkstra(G1, s1)
arr2 = Dijkstra(G1, s2)
arr3 = Dijkstra(G2, dest)
ans = float("inf")
for i in range(n):
ans = min(ans, arr1[i] + arr2[i] + arr3[i])
return ans if ans != float("inf") else -1
void bfs(int st, vector<vector<pair<int, int>>> &al, vector<long long>& visited) {
priority_queue<pair<long long, int>, vector<pair<long long, int>>, greater<pair<long long, int>>> pq;
pq.push({0, st});
while (!pq.empty()) {
auto [dist, i] = pq.top(); pq.pop();
if (visited[i] != dist)
continue;
for (auto [j, w] : al[i]) {
if (visited[j] > dist + w) {
visited[j] = dist + w;
pq.push({visited[j], j});
}
}
}
}
long long minimumWeight(int n, vector<vector<int>>& edges, int src1, int src2, int dest) {
long long max_val = 10000000000, res = LLONG_MAX;
vector<vector<pair<int, int>>> al(n), ral(n);
vector<long long> dd(n, max_val), s1d(n, max_val), s2d(n, max_val);
dd[dest] = s1d[src1] = s2d[src2] = 0;
for (auto &e : edges) {
al[e[0]].push_back({e[1], e[2]});
ral[e[1]].push_back({e[0], e[2]});
}
bfs(dest, ral, dd);
bfs(src1, al, s1d);
bfs(src2, al, s2d);
if (dd[src1] == max_val || dd[src2] == max_val)
return -1;
for (int i = 0; i < n; ++i)
res = min(res, dd[i] + s1d[i] + s2d[i]);
return res;
}
class Solution {
ArrayList<int[]>[] nextGraph, preGraph;
public long minimumWeight(int n, int[][] edges, int src1, int src2, int dest) {
buildGraph(n, edges);
long[] src1To = new long[n], src2To = new long[n], toDest = new long[n];
Arrays.fill(src1To, -1);
Arrays.fill(src2To, -1);
Arrays.fill(toDest, -1);
shortestPath(src1, src1To, nextGraph);
shortestPath(src2, src2To, nextGraph);
shortestPath(dest, toDest, preGraph);
long res = -1;
for (int i = 0; i < n; i++) {
long d1 = src1To[i], d2 = src2To[i], d3 = toDest[i];
if (d1 >= 0 && d2 >= 0 && d3 >= 0) {
long d = d1 + d2 + d3;
if (res == -1 || d < res) {
res = d;
}
}
}
return res;
}
private void buildGraph(int n, int[][] edges) {
nextGraph = new ArrayList[n];
preGraph = new ArrayList[n];
for (int i = 0; i < n; i++) {
nextGraph[i] = new ArrayList<int[]>();
preGraph[i] = new ArrayList<int[]>();
}
for (int[] edge : edges) {
int from = edge[0], to = edge[1], weight = edge[2];
nextGraph[from].add(new int[] {to, weight});
preGraph[to].add(new int[] {from, weight});
}
}
private void shortestPath(int src, long[] srcTo, ArrayList<int[]>[] graph) {
PriorityQueue<long[]> heap = new PriorityQueue<>((a, b) -> Long.compare(a[1], b[1]));
heap.offer(new long[] {src, 0});
while (!heap.isEmpty()) {
long[] node = heap.poll();
int to = (int) node[0];
long dist = node[1];
if (srcTo[to] != -1 && srcTo[to] <= dist) continue;
srcTo[to] = dist;
for (int[] next : graph[to]) {
heap.offer(new long[] {next[0], dist + next[1]});
}
}
}
}
class Solution:
def minimumWeight(self, n: int, edges: List[List[int]], src1: int, src2: int, dest: int) -> int:
graph, reverse_graph = defaultdict(list), defaultdict(list)
for i, j, w in edges:
graph[i].append((j, w))
reverse_graph[j].append((i, w))
def dijkstra(src, G):
distance = [-1] * n
pq = [(0, src)]
while pq:
w, node = heappop(pq)
if distance[node] >= 0:
continue
distance[node] = w
for nxt, wt in G[node]:
if distance[nxt] < 0:
heappush(pq, (w + wt, nxt))
return distance
l1 = dijkstra(src1, graph)
l2 = dijkstra(src2, graph)
l3 = dijkstra(dest, reverse_graph)
best_dist = -1
for i in range(n):
if l1[i] >= 0 and l2[i] >= 0 and l3[i] >= 0:
cur_dist = l1[i] + l2[i] + l3[i]
if best_dist < 0 or cur_dist < best_dist:
best_dist = cur_dist
return best_dist
In our experience, we suggest you solve this Weekly Contest 284 LeetCode Solution and gain some new skills from Professionals completely free and we assure you will be worth it.
If you are stuck anywhere between any coding problem, just visit Queslers to get the Weekly Contest 284 LeetCode Solution
I hope this Weekly Contest 284 LeetCode Solution would be useful for you to learn something new from this problem. If it helped you then don’t forget to bookmark our site for more Coding Solutions.
This Problem is intended for audiences of all experiences who are interested in learning about Data Science in a business context; there are no prerequisites.
Keep Learning!
More Coding Solutions >>