Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
#include <bits/stdc++.h>
using namespace std;
bool isPrime[10000];
void init()
{
// Since range is very small so not used Sieve
for (int i = 2; i < sizeof(isPrime); ++i) {
int j = 2;
for (; j * j <= i; ++j) {
if (i % j == 0) {
break;
}
}
if (j * j > i) isPrime[i] = true;
}
}
main()
{
init();
int testCases, divisors[1000005];
scanf("%d", &testCases);
while(testCases--) {
long long L, R;
scanf("%lld%lld", &L, &R);
for(long long i=L; i<=R; i++) divisors[i-L] = 0;
for(long long i=1; i*i <= R; i++) {
long long square = i*i;
for(long long j=( (L-1) / i + 1) * i; j <= R; j += i) {
if (j < square) continue;
if( square == j )
divisors[j-L] += 1;
else divisors[j-L] += 2;
}
}
int ans = 0;
for(long long i = L; i <= R; i++) if(isPrime[divisors[i-L]]) ans++;
printf("%d\n",ans);
}
}
#include <bits/stdc++.h>
#pragma optimization_level 3
#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math,O3")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx")
#pragma GCC optimize("Ofast")//Comment optimisations for interactive problems (use endl)
#pragma GCC target("avx,avx2,fma")
#pragma GCC optimization ("unroll-loops")
using namespace std;
struct PairHash {inline std::size_t operator()(const std::pair<int, int> &v) const { return v.first * 31 + v.second; }};
// speed
#define Code ios_base::sync_with_stdio(false);
#define By ios::sync_with_stdio(0);
#define Sumfi cout.tie(NULL);
// alias
using ll = long long;
using ld = long double;
using ull = unsigned long long;
// constants
const ld PI = 3.14159265358979323846; /* pi */
const ll INF = 1e18;
const ld EPS = 1e-9;
const ll MAX_N = 101010;
const ll mod = 998244353;
// typedef
typedef pair<ll, ll> pll;
typedef vector<pll> vpll;
typedef array<ll,3> all3;
typedef array<ll,5> all5;
typedef vector<all3> vall3;
typedef vector<all5> vall5;
typedef vector<ld> vld;
typedef vector<ll> vll;
typedef vector<vll> vvll;
typedef vector<int> vi;
typedef deque<ll> dqll;
typedef deque<pll> dqpll;
typedef pair<string, string> pss;
typedef vector<pss> vpss;
typedef vector<string> vs;
typedef vector<vs> vvs;
typedef unordered_set<ll> usll;
typedef unordered_set<pll, PairHash> uspll;
typedef unordered_map<ll, ll> umll;
typedef unordered_map<pll, ll, PairHash> umpll;
// macros
#define rep(i,m,n) for(ll i=m;i<n;i++)
#define rrep(i,m,n) for(ll i=n;i>=m;i--)
#define all(a) begin(a), end(a)
#define rall(a) rbegin(a), rend(a)
#define ZERO(a) memset(a,0,sizeof(a))
#define MINUS(a) memset(a,0xff,sizeof(a))
#define INF(a) memset(a,0x3f3f3f3f3f3f3f3fLL,sizeof(a))
#define ASCEND(a) iota(all(a),0)
#define sz(x) ll((x).size())
#define BIT(a,i) (a & (1ll<<i))
#define BITSHIFT(a,i,n) (((a<<i) & ((1ll<<n) - 1)) | (a>>(n-i)))
#define pyes cout<<"Yes\n";
#define pno cout<<"No\n";
#define endl "\n"
#define pneg1 cout<<"-1\n";
#define ppossible cout<<"Possible\n";
#define pimpossible cout<<"Impossible\n";
#define TC(x) cout<<"Case #"<<x<<": ";
#define X first
#define Y second
// utility functions
template <typename T>
void print(T &&t) { cout << t << "\n"; }
template<typename T>
void printv(vector<T>v){ll n=v.size();rep(i,0,n){cout<<v[i];if(i+1!=n)cout<<' ';}cout<<endl;}
template<typename T>
void printvln(vector<T>v){ll n=v.size();rep(i,0,n)cout<<v[i]<<endl;}
void fileIO(string in = "input.txt", string out = "output.txt") {freopen(in.c_str(),"r",stdin); freopen(out.c_str(),"w",stdout);}
void readf() {freopen("", "rt", stdin);}
template<typename T>
void readv(vector<T>& v){rep(i,0,sz(v)) cin>>v[i];}
template<typename T, typename U>
void readp(pair<T,U>& A) {cin>>A.first>>A.second;}
template<typename T, typename U>
void readvp(vector<pair<T,U>>& A) {rep(i,0,sz(A)) readp(A[i]); }
void readvall3(vall3& A) {rep(i,0,sz(A)) cin>>A[i][0]>>A[i][1]>>A[i][2];}
void readvall5(vall5& A) {rep(i,0,sz(A)) cin>>A[i][0]>>A[i][1]>>A[i][2]>>A[i][3]>>A[i][4];}
void readvvll(vvll& A) {rep(i,0,sz(A)) readv(A[i]);}
struct Combination {
vll fac, inv;
ll n, MOD;
ll modpow(ll n, ll x, ll MOD = mod) { if(!x) return 1; ll res = modpow(n,x>>1,MOD); res = (res * res) % MOD; if(x&1) res = (res * n) % MOD; return res; }
Combination(ll _n, ll MOD = mod): n(_n + 1), MOD(MOD) {
inv = fac = vll(n,1);
rep(i,1,n) fac[i] = fac[i-1] * i % MOD;
inv[n - 1] = modpow(fac[n - 1], MOD - 2, MOD);
rrep(i,1,n - 2) inv[i] = inv[i + 1] * (i + 1) % MOD;
}
ll fact(ll n) {return fac[n];}
ll nCr(ll n, ll r) {
if(n < r or n < 0 or r < 0) return 0;
return fac[n] * inv[r] % MOD * inv[n-r] % MOD;
}
};
struct Matrix {
ll r,c;
vvll matrix;
Matrix(ll r, ll c, ll v = 0): r(r), c(c), matrix(vvll(r,vll(c,v))) {}
Matrix operator*(const Matrix& B) const {
Matrix res(r, B.c);
rep(i,0,r) rep(j,0,B.c) rep(k,0,B.r) {
res.matrix[i][j] = (res.matrix[i][j] + matrix[i][k] * B.matrix[k][j] % mod) % mod;
}
return res;
}
Matrix copy() {
Matrix copy(r,c);
copy.matrix = matrix;
return copy;
}
Matrix pow(ll n) {
assert(r == c);
Matrix res(r,r);
Matrix now = copy();
rep(i,0,r) res.matrix[i][i] = 1;
while(n) {
if(n & 1) res = res * now;
now = now * now;
n /= 2;
}
return res;
}
};
// geometry data structures
template <typename T>
struct Point {
T y,x;
Point(T y, T x) : y(y), x(x) {}
Point(pair<T,T> p) : y(p.first), x(p.second) {}
Point() {}
void input() {cin>>y>>x;}
friend ostream& operator<<(ostream& os, const Point<T>& p) { os<<p.y<<' '<<p.x<<'\n'; return os;}
Point<T> operator+(Point<T>& p) {return Point<T>(y + p.y, x + p.x);}
Point<T> operator-(Point<T>& p) {return Point<T>(y - p.y, x - p.x);}
Point<T> operator*(ll n) {return Point<T>(y*n,x*n); }
Point<T> operator/(ll n) {return Point<T>(y/n,x/n); }
bool operator<(const Point &other) const {if (x == other.x) return y < other.y;return x < other.x;}
Point<T> rotate(Point<T> center, ld angle) {
ld si = sin(angle * PI / 180.), co = cos(angle * PI / 180.);
ld y = this->y - center.y;
ld x = this->x - center.x;
return Point<T>(y * co - x * si + center.y, y * si + x * co + center.x);
}
ld distance(Point<T> other) {
T dy = abs(this->y - other.y);
T dx = abs(this->x - other.x);
return sqrt(dy * dy + dx * dx);
}
T norm() { return x * x + y * y; }
};
template<typename T>
struct Line {
Point<T> A, B;
Line(Point<T> A, Point<T> B) : A(A), B(B) {}
Line() {}
void input() {
A = Point<T>();
B = Point<T>();
A.input();
B.input();
}
T ccw(Point<T> &a, Point<T> &b, Point<T> &c) {
T res = a.x * b.y + b.x * c.y + c.x * a.y;
res -= (a.x * c.y + b.x * a.y + c.x * b.y);
return res;
}
bool isIntersect(Line<T> o) {
T p1p2 = ccw(A,B,o.A) * ccw(A,B,o.B);
T p3p4 = ccw(o.A,o.B,A) * ccw(o.A,o.B,B);
if (p1p2 == 0 && p3p4 == 0) {
pair<T,T> p1(A.y, A.x), p2(B.y,B.x), p3(o.A.y, o.A.x), p4(o.B.y, o.B.x);
if (p1 > p2) swap(p2, p1);
if (p3 > p4) swap(p3, p4);
return p3 <= p2 && p1 <= p4;
}
return p1p2 <= 0 && p3p4 <= 0;
}
pair<bool,Point<ld>> intersection(Line<T> o) {
if(!this->intersection(o)) return {false, {}};
ld det = 1. * (o.B.y-o.A.y)*(B.x-A.x) - 1.*(o.B.x-o.A.x)*(B.y-A.y);
ld t = ((o.B.x-o.A.x)*(A.y-o.A.y) - (o.B.y-o.A.y)*(A.x-o.A.x)) / det;
return {true, {A.y + 1. * t * (B.y - A.y), B.x + 1. * t * (B.x - A.x)}};
}
//@formula for : y = ax + b
//@return {a,b};
pair<ld, ld> formula() {
T y1 = A.y, y2 = B.y;
T x1 = A.x, x2 = B.x;
if(y1 == y2) return {1e9, 0};
if(x1 == x2) return {0, 1e9};
ld a = 1. * (y2 - y1) / (x2 - x1);
ld b = -x1 * a + y1;
return {a, b};
}
};
template<typename T>
struct Circle {
Point<T> center;
T radius;
Circle(T y, T x, T radius) : center(Point<T>(y,x)), radius(radius) {}
Circle(Point<T> center, T radius) : center(center), radius(radius) {}
Circle() {}
void input() {
center = Point<T>();
center.input();
cin>>radius;
}
bool circumference(Point<T> p) {
return (center.x - p.x) * (center.x - p.x) + (center.y - p.y) * (center.y - p.y) == radius * radius;
}
bool intersect(Circle<T> c) {
T d = (center.x - c.center.x) * (center.x - c.center.x) + (center.y - c.center.y) * (center.y - c.center.y);
return (radius - c.radius) * (radius - c.radius) <= d and d <= (radius + c.radius) * (radius + c.radius);
}
bool include(Circle<T> c) {
T d = (center.x - c.center.x) * (center.x - c.center.x) + (center.y - c.center.y) * (center.y - c.center.y);
return d <= radius * radius;
}
};
ll __gcd(ll x, ll y) { return !y ? x : __gcd(y, x % y); }
all3 __exgcd(ll x, ll y) { if(!y) return {x,1,0}; auto [g,x1,y1] = __exgcd(y, x % y); return {g, y1, x1 - (x/y) * y1}; }
ll __lcm(ll x, ll y) { return x / __gcd(x,y) * y; }
ll modpow(ll n, ll x, ll MOD = mod) { n%=MOD; if(!x) return 1; ll res = modpow(n,x>>1,MOD); res = (res * res) % MOD; if(x&1) res = (res * n) % MOD; return res; }
ll prime[MAX_N];
void init() {
prime[0] = prime[1] = true;
rep(i,2,MAX_N) {
if(prime[i]) continue;
for(ll j = i * i; j < MAX_N; j += i) prime[j] = true;
}
}
ll solve(ll l, ll r) {
vll A(r-l + 1);
for(ll i = 1; i * i <= r; i++) {
ll pow2 = i * i;
for(ll j = ((l - 1) / i + 1) * i; j <= r; j += i) {
if(j < pow2) continue;
if(pow2 == j) A[j-l] += 1;
else A[j-l] += 2;
}
}
ll res = 0;
rep(i,0,sz(A)) if(!prime[A[i]]) res += 1;
return res;
}
int main() {
Code By Sumfi
cout.precision(12);
init();
ll tc = 1;
cin>>tc;
rep(i,1,tc+1) {
ll l,r;
cin>>l>>r;
print(solve(l,r));
}
return 0;
}
from bisect import bisect
from math import sqrt,floor
prime = []
isprime = [True]*(10**6 + 2)
isprime[0] = False
isprime[1] = False
for x in range(2,10**6+2):
if(isprime[x]):
prime.append(x)
for i in range(2*x,10**6+2,x):
isprime[i] = False
for _ in range(int(input())):
a,b = map(int,input().split())
sq_rt = floor(sqrt(b)) + 1
index = bisect(prime,sq_rt)
arr = prime[:index]
ans = 0
if(a<=1):
a=2
isprime = [True]*(b-a+1)
for x in arr:
st = floor(a/x)*x
if(st<a):
st+=x
if(st==x):
st+=x
st = st-a
for y in range(st,b-a+1,x):
if(isprime[y]==True):
isprime[y] = [x]
else:
isprime[y].append(x)
for x in range(b-a+1):
if(isprime[x]==True):
ans+=1
else:
temp = 1
val = a+x
if(sqrt(val) == int(sqrt(val))):
c = 0
while(val>1 and c<len(isprime[x])):
elem = isprime[x][c]
t = 0
while(val%elem==0):
t+=1
val = val//elem
temp *= (1+t)
c+=1
pos = bisect(prime,temp) - 1
if(prime[pos]==temp):
ans+=1
else:
continue
print(ans)
#include <stdio.h>
void scani(int *z){
*z=0;
char c;
int mul=1;
c=getchar_unlocked();
while(c!='-'&&( c<'0'||c>'9'))
c=getchar_unlocked();
if(c=='-')
mul=-1,c=getchar_unlocked();
while(c>='0'&&c<='9'){
*z=(*z<<3)+(*z<<1)+(c-'0')*mul;
c=getchar_unlocked();
}
}
int main(void) {
// your code goes here
int t,n,k,i,j,c,z,p,fact[1000005];
long long int l,r,arr[1000005],q,w;
char a[1000005]={1,1};
for(i=4;i*2<1000000;i+=2)
a[i]=1;
for(i=3;i*i<1000000;i+=2){
if(a[i])
continue;
for(j=i*i;j<1000000;){
a[j]=1;
j+=2*i;
}
}
scani(&t);
while(t--){
k=0;
scanf("%lld%lld",&l,&r);
if(l<2)
l=2;
for(w=l;w<=r;w++){
arr[w-l]=w;
fact[w-l]=1;
}
for(w=2;w*w<=r;w++){
if(a[w])
continue;
for(q=((l-1)/w+1)*w;q<=r;q+=w){
c=0;
p=q-l;
while(arr[p]%w==0){
arr[p]/=w;
c++;
}
fact[p]*=c+1;
}
}
for(i=0;i<=r-l;i++){
if(arr[i]>1){
fact[i]*=2;
}
if(a[fact[i]]==0)
k++;
}
printf("%d\n",k);
}
return 0;
}
//package kg.my_algorithms.codechef;
import jdk.jshell.spi.SPIResolutionException;
import java.io.*;
import java.util.*;
// NO PROFILE CHECK AND Code of Conduct for Future Family
public class Main {
private static final long MOD = 1_000_000_007L;
public static void main(String[] args) throws IOException {
BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out));
FastReader fr = new FastReader();
StringBuilder sb = new StringBuilder();
int testCases = fr.nextInt();
HashSet<Integer> primes =new HashSet<>();
int nn = 1_000_001;
boolean[] visited = new boolean[nn+1];
for(int i=2;i<=nn;i++){
if(!visited[i]){
primes.add(i);
for(int j=i;j<=nn;j+=i) {
visited[j] = true;
}
}
}
for(int testCase=1;testCase<=testCases;testCase++){
long left = fr.nextLong();
long right = fr.nextLong();
int n = (int)(right-left+1);
int[] divisors = new int[n];
int right_limit = (int)Math.sqrt(right);
for(int i=1;i<=right_limit;i++){
long start = ((long)Math.ceil(left/(double)i))*i;
for(long j=start;j<=right;j+=i){
int pos = (int)(j-left);
divisors[pos]++;
long otherSide = j/i;
if(otherSide>right_limit) divisors[pos]++;
}
}
int cnt = 0;
for(int a: divisors) if(primes.contains(a)) cnt++;
// System.out.println("divisors= " + Arrays.toString(divisors));
sb.append(cnt).append("\n");
}
output.write(sb.toString());
output.flush();
}
}
class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
if(st.hasMoreTokens()){
str = st.nextToken("\n");
}
else{
str = br.readLine();
}
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
from bisect import bisect
from math import sqrt,floor
prime = []
isprime = [True]*(10**6 + 2)
isprime[0] = False
isprime[1] = False
for x in range(2,10**6+2):
if(isprime[x]):
prime.append(x)
for i in range(2*x,10**6+2,x):
isprime[i] = False
# print(prime)
for _ in range(int(input())):
a,b = map(int,input().split())
sq_rt = floor(sqrt(b)) + 1
index = bisect(prime,sq_rt)
arr = prime[:index]
ans = 0
if(a<=1):
a=2
isprime = [True]*(b-a+1)
for x in arr:
st = floor(a/x)*x
if(st<a):
st+=x
if(st==x):
st+=x
st = st-a
for y in range(st,b-a+1,x):
if(isprime[y]==True):
isprime[y] = [x]
else:
isprime[y].append(x)
for x in range(b-a+1):
if(isprime[x]==True):
ans+=1
else:
temp = 1
val = a+x
if(sqrt(val) == int(sqrt(val))):
c = 0
while(val>1 and c<len(isprime[x])):
elem = isprime[x][c]
t = 0
while(val%elem==0):
t+=1
val = val//elem
temp *= (1+t)
c+=1
pos = bisect(prime,temp) - 1
# print(pos,ans,prime[pos])
if(prime[pos]==temp):
ans+=1
else:
continue
# print(ans)
print(ans)
import bisect
def get_primes1(n=10**6):
sieve =[True] * n
for i in xrange(3, int(n**.5) + 1, 2):
if sieve[i]:
sieve[i*i::2*i] = [False] * ((n - i*i - 1) / (2*i) + 1)
primes = [2] + [i for i in xrange(3, n, 2) if sieve[i]]
primes_power = []
max_ = 10 ** 12
for p in primes:
for e in primes:
if e == 2:
continue
r = p ** (e - 1)
if r > max_:
break
primes_power.append(r)
return primes, sorted(primes_power)
PRIMES, PRIMES_POWER = get_primes1()
#print ">>> ", PRIMES[:10]
#print ">>> ", PRIMES_POWER[:10]
def get_primes2(a, b):
max_ = 10 ** 6
primes_count = 0
i_p = bisect.bisect_left(PRIMES_POWER, a)
j_p = bisect.bisect(PRIMES_POWER, b)
primes_power_count = j_p - i_p
# Case a or/and b are less than 10**6 is already computed.
if a <= max_:
i_p = bisect.bisect_left(PRIMES, a)
a = max_ + 1
if b <= max_:
j_p = bisect.bisect(PRIMES, b)
return j_p - i_p + primes_power_count
else:
primes_count = len(PRIMES) - i_p
# Get primes between a and b.
sieve = [True] * (b - a + 1)
for p in PRIMES:
if a % p == 0:
i = a
else:
i = a + p - (a % p)
sieve[i-a::p] = [False] * ((b - i) / p + 1)
s = a
while s <= b:
primes_count += sieve[s-a]
s += 1
return primes_count + primes_power_count
def main():
t = int(raw_input())
for _ in xrange(t):
a, b = map(int, raw_input().split())
print get_primes2(a, b)
if __name__ == '__main__':
main()
using System;
static class program
{
public static void Main()
{
bool[] prime = new bool[1000001];
prime[0] = prime[1] = false;
int[] primes = new int[1000000];
int pc = 0;
for (int i = 2; i <= 1000000; ++i)
{
prime[i] = true;
}
for (int i = 2; i <= 1000000; ++i)
{
if (prime[i] == true)
{
primes[pc++] = i;
for (int j = 2; i * j <= 1000000; ++j)
{
prime[i * j] = false;
}
}
}
int t = int.Parse(Console.ReadLine());
for (int i = 0; i < t; ++i)
{
long l, r;
string[] ip = Console.ReadLine().Split();
l = long.Parse(ip[0]);
r = long.Parse(ip[1]);
if (l == 1) ++l;
long n = r - l + 1;
bool[] segment = new bool[n];
for (int j = 0; j < n; ++j)
{
segment[j] = true;
}
for (int k = 0; k < pc && primes[k]<=Math.Sqrt(r); ++k)
{
long st = (long)Math.Ceiling(1.0 * l / primes[k]);
st *= primes[k];
if (st == 1 || primes[k] == st)
{
st += primes[k];
}
for (; st <= r; st += primes[k])
{
segment[st - l] = false;
}
}
int ans=0;
for (int j = 0; j < n; ++j)
{
if (segment[j] == true) ++ans;
}
//Console.WriteLine(ans);
for (int j = 0; primes[j] <= Math.Sqrt(r) && j<pc; ++j)
{
int sol1 = (int)(Math.Log(r)/Math.Log(primes[j]));
int sol2 = (int)Math.Ceiling(Math.Log(l)/Math.Log(primes[j]));
for (int k = sol2; k <= sol1; ++k)
{
if (k >= 2 && prime[k + 1] == true) ++ans;
}
}
Console.WriteLine(ans);
//Console.ReadLine();
}
}
}
package main
import (
"fmt"
//"time"
)
const (
max_prime = 100000
)
var sieve [max_prime]bool
var primes []int
func fill_sieve() {
n := len(sieve)
sieve[0] = true
sieve[1] = true
for i := 2; i * i < n; i++ {
if sieve[i] {
//i is not a prime
continue
}
for j := i * i; j < n; j += i {
sieve[j] = true
}
}
}
func append_primes() {
for i, v := range sieve {
if !v {
primes = append(primes, i)
}
}
}
func prepare_primes() {
fill_sieve()
//append_primes()
}
func main() {
// defer func(start time.Time) {
// fmt.Println("Solution Time:", time.Since(start))
// }(time.Now())
prepare_primes()
var interval [1000*1000 + 1]int
for i := uint64(0); i < 1000*1000 + 1; i++ {
interval[i] = 2
}
var T int
fmt.Scan(&T)
for ; T > 0; T-- {
var a, b uint64
fmt.Scan(&a)
fmt.Scan(&b)
if a == 1 {
interval[0] = 1
}
for i := uint64(2); i * i <= b; i++ {
i2 := i * i
begin := a / i * i
if begin < a {
begin += i
}
if begin < i2 {
begin = i2
}
for j := begin; j <= b; j += i {
interval[j - a] += 2
if j == i2 {
interval[j - a]--
}
}
}
count := 0
for i := uint64(0); i <= b - a; i++ {
if !sieve[interval[i]] {
count++
}
interval[i] = 2
}
fmt.Println(count)
}
}
In our experience, we suggest you solve this Yet Another Cute Girl CodeChef Solution and gain some new skills from Professionals completely free and we assure you will be worth it.
If you are stuck anywhere between any coding problem, just visit Queslers to get the Yet Another Cute Girl CodeChef Solution.
“I hope this Yet Another Cute Girl CodeChef Solution would be useful for you to learn something new from this problem. If it helped you then don’t forget to bookmark our site for more Coding Solutions.
This Problem is intended for audiences of all experiences who are interested in learning about Programming Language in a business context; there are no prerequisites.
Keep Learning!